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Abstract

In the present paper, a method proposed by one of the authors is extended to a class of skew-symmetric elastic prob-
lems for the stress analysis of a layer supported by sliding fixed supports and weakened by several stress raisers. The
corresponding boundary value problem is reduced to an infinite system of one-dimensional singular integral equations
of the second kind. The expressions for the stress components in an elastic layer weakened by stress raisers are pre-
sented. Based on the developed analytical algorithm, extensive numerical investigations have been conducted. The
results of these investigations are illustrated graphically exposing some novel qualitative and quantitative knowledge
about stress concentration in the layer depending on some geometric parameters of stress raisers and Poisson�s ratio
of a layer material.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The stress concentration problem in the modern mechanical engineering is critical because it is associated
with durability and reliability of projected machines and structures and their components. Stress raisers in
such structures can occur as a result of material composition imperfections (cavities, flaws, foreign inclu-
sions) or they can be caused by technological and structural needs (holes, cuts, etc.). In both cases, analyzing
the effect of single and multiple stress raisers, as well as their mutual effect on a stress state of structural com-
ponents is very important. The accurate analysis of stress states in structures near stress raisers demands a
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three-dimensional problem statement (Chen et al., 2000; Chung and Pon, 2001; Matysiak and Pauk, 1999;
Meshii and Woctanabe, 1998; Noda et al., 1998; Sundara Raja Iyengar et al., 1988; Sih et al., 1966).

The efficient homogeneous solutions method (HSM) was developed by Lur�ye (1942) for solving three-
dimensional problems. This method was generally employed by Grigoluk et al. (1995), Kosmodamianskii
and Shaldyrvan (1978), Fil�shtinskii et al. (2002), and Sundara Raja Iyengar et al. (1988) for the stress anal-
ysis in layers weakened by various stress raisers. Another efficient method, the eigen-vector function meth-
od, has been employed by Grinchenko and Ulitko (1970) for solving three-dimensional problems, in
particular, the Kirsch problem for a layer. A different approach to solving three-dimensional elastic prob-
lems for thick-walled orthotropic cylinders has been proposed by Grigorenko et al. (2001).

The HSM is very efficient in the construction of a set of particular solutions for a layer (cylinder) having
any boundary conditions on its bases. If the boundary conditions are of the ‘‘crossed type’’ (sliding fixed
ends or layer bases are attached to a diaphragm that is absolutely rigid in its plane and is flexible in
out-of-plane direction), then the resulting boundary value problem becomes somewhat simpler. Such prob-
lems are said to periodic with respect to one of the coordinates. The procedure for solving such periodic
problems of the theory of elasticity and electro elasticity for a piecewise homogeneous cylinder in R3, dif-
ferent from Lur�ye�s method, was proposed by Fil�shtinskii (1990). The problem of stretching and bending
of a layer weakened by a through-thickness crack for homogeneous by stresses boundary conditions on the
layer bases, has been considered by Fil�shtinskii et al. (2002).

In this paper, a mixed skew-symmetric elasticity problem for a layer weakened by two through-thickness
cavities-cuts with mixed boundary conditions on its bases is considered. A distinctive feature of the present
investigation lies in the fact that the homogeneous solutions are constructed with the use of the procedure
proposed by one of the authors (Fil�shtinskii, 1990). This procedure does not exploit the highly cumber-
some symbolic Lur�ye�s method. Furthermore, one-dimensional singular integral equations, or more pre-
cisely, an infinite system of such equations, are used for solving the three-dimensional boundary value
problem for a cylindrical body.

The conducted numerical investigations have shown a rapid convergence of the solution of the system of
singular integral equations throughout the entire range of the ‘‘thickness’’ coordinate. Thus, the proposed
procedure actually reduces the involved problem dimensionality by two.
2. The problem statement and the method of solution

Let us consider an elastic layer �h 6 x3 6 h, �1 < x1,x2 <1, weakened by two through-thickness cuts-
cavities situated along the x3 axis. The cross sections of these cuts-cavities represent nonintersecting and
sufficiently smooth contours Ln (n = 1,2) (L1jL2 = H). Let a surface load (N,T,Z) be applied on the cut
boundaries and no loading is applied on an infinity. We assume that the components of the given loading
are expanded into Fourier series in the x3 coordinate on [�h,h]. Let the following conditions hold on the
layer ends:
u3ðx1; x2;�hÞ ¼ r13ðx1; x2;�hÞ ¼ r23ðx1; x2;�hÞ ¼ 0. ð2:1Þ

The components of the displacement vector can be written in the form:
ui ¼
X1
k¼0

uikðx1; x2Þ sin ckx3; ði ¼ 1; 2Þ;

u3 ¼
X1
k¼0

u3kðx1; x2Þ cos ckx3; ck ¼
2k þ 1

2h
p.

ð2:2Þ
The above representations of the displacement vector components satisfy automatically conditions (2.1)
on the ends of the layer.
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After separating the variables in the Lame equations, we obtain the following system:
jkuik þ roihk ¼ 0; jku3k þ rckhk ¼ 0;

jk ¼ D� c2k ; D ¼ o21 þ o22; hk ¼ o1u1k þ o2u2k � cku3k;

oi ¼ o=oxi ði ¼ 1; 2Þ; r ¼ ð1� 2mÞ�1.

ð2:3Þ
Eq. (2.3) can be integrated in the following manner. Taking into account that hk is a metaharmonic
function,one can introduce an arbitrary solution to the equation j2

kwk ¼ 0. Let us assume that hk = jkwk.
This provides a way to obtain the following:
u1k ¼ �ro1Xk þ ro2X
�
k ; u2k ¼ �ro2Xk � ro1X

�
k ;

u3k ¼ �ckrXk þ Uk; kkX
�
k ¼ 0; kkUk ¼ 0 ðk ¼ 0; 1; . . .Þ;

ð2:4Þ
where X�
k and Uk are arbitrary metaharmonic functions. Then we require that the expressions (2.4) satisfy

the equality hk = jkXk. This leads to the following representations:
u1k � iu2k ¼ 2r
o

oz
ðiX�

k � XkÞ; u3k ¼ � 1þ r
ck

jk þ rck

� �
Xk;

o

oz
¼ 1

2
ðo1 � io2Þ; z ¼ x1 þ ix2. ð2:5Þ
The formulas (2.2) and (2.5) yield the expressions for elastic displacements in the layer in terms of the
functions X�

k and Xk, where X�
k (vortex solution) describes a rotation of an element about the Ox3 axis:

o2u1k � o1u2k ¼ rDX�
k .

The integral representations of the functions hk, X
�
k and Xk are taken in the form:
hkðzÞ ¼
X2

j¼1

Z
Lj

pjkðfjÞK0ðckrjÞdsj þ
2

ck
Re

Z
Lj

qjkðfjÞ
o

ofj
K0ðckrjÞdfj;

iX�
kðzÞ � XkðzÞ ¼

X2

j¼1

2i

ck

Z
Lj

�q�jkðfjÞ
o

o�fj
K0ðckrjÞd�fj þ

1

c2k
Re

Z
Lj

qjkðfjÞ
o

ofj
ðrjK1ðckrjÞÞdfj;

rj ¼ jfj � zj; fj ¼ nj þ igj 2 Lj; z ¼ x1 þ ix2; ð2:6Þ
where Kn(ckr) is the Macdonald function of order n, ds is an arc element of contour L; the densities pjk(fj),
qjk(fj), and q�jkðfjÞ are not yet known.

The boundary conditions on L are written in the complex form as follows:
ðr11 þ r22Þ � e2iwðr22 � r11 þ 2ir12Þ ¼ 2ðN � iT Þ;

Re½e�iwðr13 þ ir23Þ� ¼ Z;
ð2:7Þ
where w is an angle between the outward normal to the boundary of the cavity-cut and the Ox1 axis.
Using Hooke�s law and the formulas (2.5), one can represent the conditions (2.7) in the following

form:
2re2iw
o2

oz2
ðiX�

k � XkÞ
� �

� 1

2
hk �

1

2
rc2kXk ¼

1

2l
ðNk � iT kÞ;

Re eiw rck
o

oz
ðiX�

k � XkÞ �
o

oz
rckXk þ

1þ r
ck

hk

� �� �� �
¼ 1

2l
Zk.

ð2:8Þ
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3. The system of singular integral equations

By using the the passage to the limit and the representation (2.6), the boundary value problem (2.8) is
reduced to the following system of six singular integral equations (for each fixed value of k)
xn2kak þ xn3kbk þ
X2

j¼1

X3

i¼1

Z
Lj

xjikG
ðnÞ
jik dsj ¼

1

2l
ðN ðnÞ

k � iT ðnÞ
k Þ;

xn1kck þ
X2

j¼1

X3

i¼1

Z
Lj

xjikG
�ðnÞ
jik dsj ¼

1

2l
ZðnÞ
k ;

ð3:1Þ
where
ak ¼
pið1þ rÞ

2ck
; bk ¼

pð1þ rÞ
2ck

; ck ¼ �bk;

GðnÞ
j1kðfj; fn0Þ ¼

rck
4

rjn0K1ðckrjn0Þðe2iðwn0�ajn0Þ þ 1Þ � 1

2
K0ðckrjn0Þ;

GðnÞ
j2kðfj; fn0Þ ¼

rck
4

rjn0K0ðckrjn0Þ sinðwj � ajn0Þ �
ie2iwn0

2
hðnÞ1j ðwj; an0Þ

" #

þ K1ðckrjn0Þ
r
2
sinðwj � ajn0Þ þ

ie2iwn0

2
ð1þ rÞe�iðwjþajn0Þ � r

2
hðnÞ2j ðwj; ain0Þ

h i( )
;

G2k ¼ ðn; n0Þ ¼
zck
4

rK0ðckrÞ sinðw� a0Þ �
ie2iw0

2
h1ðw; a0Þ

" #

þ K1ðckrÞ
r
2
sinðw� a0Þ þ

ie2iw0

2
ð1þ rÞe�iðwþa0Þ � r

2
h2ðw; a0Þ

h i( )
;

hðnÞ1j ðwj; ajn0Þ ¼ eiðwj�3ajn0Þ � e�iðwjþajn0Þ;

hðnÞ2j ðwj; ajn0Þ ¼ eiðwj�3ajn0Þ � e�iðwjþajn0Þ;

G�ðnÞ
j1k ðfj; fn0Þ ¼

1

2
½rckrjn0K0ðckrjn0Þ � ð1þ rÞK1ðckrjn0Þ� cosðwn0 � ajn0Þ;

G�ðnÞ
j2k ðfj; fn0Þ ¼

rck
4

rjn0K1ðckrjn0Þ sinðwn0 þ wj � 2ajn0Þ � sinðwn0 � wjÞ
� �

� 1

2
K0ðckrjn0Þ sinðwn0 � wjÞ;

G�ðnÞ
j3k ðfj; fn0Þ ¼

rck
4

rjn0K1ðckrjn0Þ cosðwn0 þ wj � 2ajn0Þ þ cosðwn0 � wjÞ
� �

þ 1

2
K0ðckrjn0Þ cosðwn0 � wjÞ;

q�jk ¼
ið1þ aÞ
rc2k

qjk;

xj1k ¼ pjk; xj2k ¼ Reqjk; xj3k ¼ Imqjk;

fj � fn0 ¼ rjn0eiajn0 ; fn0 ¼ nn0 þ ign0 2 Ln.
Here xjik are unknown densities to be determined.
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4. The numerical results and discussion

As an example,we consider a layer weakened by two through-thickness cuts having either elliptic cross
section
L1 : n11 ¼ R11 cosu1 þ d11; n21 ¼ R21 sinu1 þ d21; 0 6 u1 6 2p;

L2 : n12 ¼ R12 cosu2 þ d12; n22 ¼ R22 sinu2 þ d22; 0 6 u2 6 2p
or square cross section (squares with rounded off corners)
L1 : n11 ¼ aðcosu1 þ c cos 3u1Þ þ d11;

n21 ¼ ða sinu1 � c sin 3u1Þ þ d21; 0 6 u1 6 2p;

L2 : n12 ¼ aðcosu2 þ c cos 3u2Þ þ d12;

n22 ¼ aðsinu2 � c sin 3u2Þ þ d22; 0 6 u2 6 2p; c ¼ 0; 14036;
The layer is subjected to load N = Px3 (P = const.) applied on the cut surfaces.
In the numerical implementation of the algorithm,the system of integral equations was reduced to the

system of linear algebraic equations by the mechanical quadrature method developed by Erdogan et al.
(1973).

To characterize the state of stress on the surface of the cut,the following stress was calculated:
rhh ¼ r11sin
2hþ r22cos

2h� 2r12 cos h sin h;

h ¼ w� p.
ð4:1Þ
The numerical procedure of the developed method involves the following steps: at first, the system of the
integral equations was solved, then the Fourier coefficients of the stress tensor, rðkÞ

ij , were determined, and
thereafter-unknown stresses on the surfaces of the corresponding cut were calculated.

The diagrams of the distribution of the relative circumferential stress r1 = �rhh/P are shown in
Figs. 1–10:

(i) along the ‘‘thickness’’ coordinate at the point where the above stress takes on the maximum value
(Figs. 1, 3, 5 and 8);

(ii) along the contour of the generator of the cylindrical surface (Figs. 2, 4, 6, 7, 9 and 10).
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Fig. 1. Distribution of the relative circumferential stress over the layer thickness for circular cuts.
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Fig. 2. Distribution of the relative circumferential stress along the generator of the cylindrical surface for circular cuts.
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Fig. 3. Distribution of the relative circumferential stress over the layer thickness for circular cuts.
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Fig. 4. Distribution of the relative circumferential stress along the generator of the cylindrical surface for circular cuts.
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Fig. 5. Distribution of the relative circumferential stress over the layer thickness for cuts having the square cross section.
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Fig. 6. Distribution of the relative circumferential stress along the generator of the cylindrical surface for cuts having the square cross
section.
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Numerical results were obtained for various Poisson�s ratios m. In what follows, the results obtained by
the proposed method are said to be approximate while the results of the axisymmetric problem of the
theory of elasticity by the series method are exact.

Let for the sake of definiteness, the contours L2 and L1 are arranged to the left and to the right of the
0x2, respectively. Let the cut centers are located on the 0x1 axis. In this case, denote the distance between
the above centers as lx. Thus
lx ¼ jd11j þ jd12j; ðd21 ¼ d22 ¼ 0Þ.

The data given in Figs. 1–4 refer to the contour L2 for the case of circular cuts of the following geometry
R11 ¼ R21 ¼ R12 ¼ R22 ¼ R ¼ 1 ðu1 ¼ u2 ¼ uÞ.

The curves 1–3, and 6 were constructed at the point u = 0 for the following data: h/R = 1; lx/R = 8, 4, 3,
and 2.5, respectively, The curves 4, 5, 7, and 8 in Fig. 1 were constructed at point u = 0 for the following
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Fig. 7. Distribution of the relative circumferential stress along the generator of the cylindrical surface for cuts having the square cross
section.
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Fig. 8. Distribution of the relative circumferential stress over the layer thickness for cuts having the square cross section.
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data: h/R = 1; lx/R = 6, 3.5, 3, and 2.5, respectively, t = 0.15. The curves 1 and 4 refer to the layer having
just one stress raiser. The points on the curves 1 and 4 correspond to the exact solution of axisymmetric
problem of the theory of elasticity for the layer weakened by one through-thickness cut. It should be noted
a good agreement between the exact and approximate solutions.

Fig. 2 shows the distribution of the circumferential stresses r1 along the generator of the cylindrical sur-
face at various sections over the thickness of the layer where the above stresses take on the maximum val-
ues. The curves 1–8 in Fig. 2 are found to fit the mechanical and geometrical parameters with the analogous
curves in Fig. 1. The curves 1 and 4 were given for the values of the ‘‘thickness’’ coordinates x3 = 0.6h and
x3 = 0.92h, respectively. The curves 1 and 4 degenerate into straight lines. This corresponds to the lack of
mutual impact of the two stress raisers. The values of the stresses given on these curves,agree well with the
corresponding solutions to axisymmetric problems of the theory of elasticity for the layer weakened by just
one circular cut. The curves 2, 3, 5–8 are given at sections x3 = 0.66h, 0.76h, 0.92h, 0.82h, 0.94h, and 0.94h,
respectively.
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Fig. 9. Distribution of the relative circumferential stress along the generator of the cylindrical surface for cuts having the square cross
section.
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Fig. 10. Distribution of the relative circumferential stress along the generator of the cylindrical surface for cuts having the square cross
section.
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The curves 1, 3, 5, and 7 in Fig. 3 were constructed at the point u = 0. for the following data: h/R = 4,
lx/R = 16, 4, 3, and 2.5, respectively; t = 0.4. The curves 2, 4, 6, and 8 in Fig. 3 were constructed at the point
u = 0 for the following data: h/R = 4; lx/R = 14, 4, 3, and 2.5, respectively; t = 0.15. The curves 1 and 2
refer to the layer with one stress raiser. The points on the curves 1 and 2 refer to the results of the exact
solution to the corresponding axisymmetric problem of the theory of elasticity for the layer weakened
by one cut. Here it is also seen that the results of the approximate and exact solutions are in a good
agreement.

Fig. 4 shows the distribution of r1 along the contour of the generator of the cylindrical surface of
various sections over the layer thickness. The curves 1–8 in Fig. 4 are found to fit mechanical and
geometrical parameters with the analogous curves in Fig. 3. The curves 1–8 were constructed at
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sections x3 = 0.92h, 0.98h, 0.94h, 0.98h, 0.94h, 0.98h, 0.96h, and 0.98h, respectively. The curves 1 and 2
correspond to the case when the effect of the mutual impact of the two stress raisers in the layer
becomes insignificant. The values given on the above curves agree well with the corresponding solu-
tions to axisymmetric problem of the theory of elasticity for the layer weakened by just one circular
cut.

The curves shown in Figs. 5–10 correspond to the contour L2 in the case of the cuts having the square
cross section u1 = u2 = u(0 6 u 6 2p). The curves 1 and 3 in Fig. 5 were constructed at the point u = 0 for
the following data: h/a = 1; lx/a = 6 and 2.5, respectively; t = 0.4. The curves 2 and 4 were constructed at
the point u = 0 for the following data: h/a = 1; lx/a = 5 and 2.5, respectively; t = 0.15. The curves 1 and 2
refer to the layer with one stress raiser.

Figs. 6 and 7 show the distribution of the stress r1 along the contour of the generator of the
cylindrical surface at various sections over the layer thickness. The curves 1 and 2 in Fig. 6 are
found to fit the mechanical and geometrical parameters with the curves 2 and 4 in Fig. 5, respectively,
while the curves 1 and 2 in Fig. 7 with the curves 1 and 3 in Fig. 5, respectively. The curves 1 and 2
in Fig. 6 were constructed at section x3 = 0.98h while the curves 1 and 2 in Fig. 7—at section
x3 = 0.96h.

The curves 1 and 3 in Fig. 8 were constructed at the point u = 0 for the following data: h/a = 4; lx/a = 12
and 2.5, respectively; t = 0.4. The curves 2 and 4 in Fig. 8 were constructed at the point u = 0 for the fol-
lowing data: h/a = 4; lx/a = 8 and 2.5, respectively; t = 0.15. The curves 1 and 2 in this figure refer to the
case of the presence of just one stress raiser in the layer.

Figs. 9 and 10 show the distribution of the stress r1 along the contour of the generator of the cylindrical
surface at various sections over the layer thickness. The curves 1 and 2 are found to fit the mechanical and
geometrical parameters with the curves 4 and 2, respectively, in Fig. 8 while the curves 1 and 2 in Fig. 10
with the curves 3 and 1 in Fig. 8, respectively. The curves 1 and 2 in Figs. 9 and 10 were constructed at
section x3 = 0.98h.
5. Conclusion

The following conclusions can be made from the conducted numerical investigation:

(i) A growth of the relative circumferential stress occurs as the intercentral distance or Poisson�s ratio
decrease;

(ii) As Poisson�s ratio increases the maximum value of the relative circumferential stress is displaced from
the layer base to its depth;

(iii) The presence of the second cut in the layer becomes insignificant for:
lx/R = 6 when h/R = 1 and t = 0.15,
lx/R = 8 when h/R = 1 and t = 0.4,
lx/R = 14 when h/R = 4 and t = 0.15,
lx/R = 16 when h/R = 4 and t = 0.4,
lx/a = 5 when h/a = 1 and t = 0.15,
lx/a = 6 when h/a = 1 and t = 0.4,
lx/a = 8 when h/a = 4 and t = 0.15,
lx/a = 12 when h/a = 4 and t = 0.4.

Thus a growth of the effective area of the mutual impact of the two stress raisers is closely associated
with the increase in Poisson�s ratio and layer thickness.
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